ORIGINAL PAPER

Tartrate- and imidazole-derived diketones and diols: preparation and stability constants of their Cu²⁺ complexes

Michal Paták · Oldřich Pytela · Filip Bureš

Received: 15 June 2010/Accepted: 15 July 2011/Published online: 24 August 2011 © Springer-Verlag 2011

Abstract Overall, six tartrate- and imidazole-derived ketones and diols were synthesized in a stepwise manner as model compounds for the coordination of Cu^{2+} ions. The stability constants of copper(II) complexes were studied spectrophotometrically. It was found that the two model structures coordinate Cu^{2+} ions differentially.

Keywords Heterocycles · Ligands · Stability constant · Metal complexes · UV/vis spectroscopy

Introduction

Tartaric acid and its functional derivatives represent a readily available, inexpensive, and optically active C_2 -symmetric backbone [1]. Both (-)-(S,S)- and (+)-(R,R)-tartaric acid derivatives have found application in various areas of chemistry, such as: (i) the synthesis of chiral ligands and auxiliaries—chiral pool [2]; (ii) bioactive compounds [3]; (iii) resolution and fermentation processes [4]; (iv) chiral derivatizing agents for NMR [5]; (v) food additives [6]. Hence, tartaric acid derivatives have proven to be among the most pervasive and versatile precursors for the stereoselective elaboration and the construction of optically pure privileged ligands, such as α , α , α' , α' ,-tetraaryl-1,3-dioxolan-4,5-dimethanols (TADDOLs) and their modifications [7–9] (Fig. 1).

The first parent TADDOL derivative (Ar = Ph, $R = CH_3$) has been synthesized by Frankland [10] as early

M. Paták · O. Pytela · F. Bureš (⊠)
Institute of Organic Chemistry and Technology,
Faculty of Chemical Technology, University of Pardubice,
Studentská 573, 53210 Pardubice, Czech Republic
e-mail: filip.bures@upce.cz

as 1904. However, the modern renaissance and the original name of TADDOL derivatives are ascribed to Seebach and co-workers [11, 12]. Since then, TADDOL derivatives evolved into easily accessible chiral ligands coordinating various (transition) metals and, especially the titanium TADDOL complexes, found applications in a variety of reactions [13].

Within the course of our research focused on the development of new optically active imidazole derivatives and their application as ligands chelating mainly Cu^{2+} ions, we have synthesized several α -amino acid- [14–19] and terpene-derived [20, 21] imidazoles. Hence, we report herein a new family of imidazole-derived diketones and diols featuring the tartaric acid motive and investigation of their Cu^{2+} complexes.

Results and discussion

Synthesis

Our synthesis started with the preparation of dimethyl (4R,5R)-2,2-dimethyl-1,3-dioxolan-4,5-dicarboxylate (1). Dicarboxylate 1 was easily generated from the commercially available (R,R)-tartaric acid by the reaction with 2,2-dimethoxypropane and *p*-toluenesulfonic acid [22]. Three basic imidazole derivatives, namely, 1-methylimidazole (2) [23], 1,4,5-trimethylimidazole (3) [24], and 1-methyl-4, 5-diphenylimidazole (4) [23, 25], were chosen as the starting heterocycles. The first attempted nucleophilic additions of C2-lithiated imidazoles 2–4 to dicarboxylate 1 proved to be difficult due to the unselective formation of several badly separable products. Hence, we turned our attention towards (4R,5R)-N,N,N',N',2,2-hexamethyl-1,3-dioxolan-4,5-dicarboxamide (5), which undergoes the desired nucleophilic

Fig. 1 The TADDOL structure

(Scheme 1, Table 1).

was necessary.

Complexation

following reaction:

Comp. $[\alpha]_{\rm D}^{20a}/{\rm deg} \ {\rm cm}^2 \ {\rm g}^{-1}$ R Yield/% m.p./°C 6 Н 58 96-97 -180.87 Me 54 85-86 -130.3substitution more selectively [26]. Thus, the reaction of 8 Ph 83 110-111 +134.0dicarboxylate 1 with dimethylamine afforded smoothly 9 Η 67 204-205 -206.8dicarboxamide 5 [27, 28]. Selective C2-lithiation of imi-10 Me 66 139-140 -143.6dazoles 2-4 and subsequent addition of the organolithium 11 Ph 48 197-198 -85.6intermediates to dicarboxamide 5 afforded the desired Concentration c is 0.5 g/100 cm³ MeOH diketones 6-8. However, the reaction conditions needed to

synthesized diketones 6-8 and diols 9-11

 $mM + nL \rightleftharpoons M_mL_n$

where m is the number of metal ions and n means the number of ligand molecules in the complex M_mL_n. The particular equilibrium is described by the stability constant of the complex defined by equation Eq. 1:

Table 1 Structure, yields, melting points, and optical rotations of the

$$\beta_{\rm mn} = \frac{\lfloor M_{\rm m} L_{\rm n} \rfloor}{\left[M \right]^m x \left[L \right]^n} \tag{1}$$

where β_{mn} is the stability constant of the complex $M_m L_n$. Spectrophotometric titration is a common technique used for the determination of the stability constants β_{mn} . Thus, spectrophotometric titration of ligands 6-11 and Cu^{2+} ions in methanol has been employed to determine the stability constants β_{mn} (Fig. 2). Factor analysis of the matrix of absorbancies (see "Experimental") during titration indicated approximately 4-5 species with different absorption spectra. This implies that, in the solution, two or three complexes are being formed. The detailed analysis through the EFA profiles [29, 30] modified for the factor analysis

be optimized. We found that the highest yields and purity

of the desired diketones 6-8 can be achieved under the following conditions: ratio of the lithiated imidazole and

the carboxamide 4:1, reaction temperature 0 °C, and

reaction time of 1.5 h followed by the reaction quench with

aqueous phosphate buffer should be used. Under these

conditions, diketones 6-8 were isolated in 54-83% yields

aforementioned conditions to afford target diols 9-11 in

vields of 48–67% (Scheme 1, Table 1). It should be noted

that direct fourfold addition of the C2-lithiated imidazoles

2-4 to dicarboxamide 5 yielded a mixture of several

inseparable products and, therefore, the stepwise addition

The formation of coordination compounds between metal

ions M and ligand L in the solution can be described by the

Diketones 6-8 were in the next reaction step repeatedly treated with the C2-lithiated imidazoles 2-4 under the

Scheme 1

Fig. 2 The change in the UV/vis spectra of the ligand 7 in methanol as a function of the copper(II) acetate addition during the titration

Fig. 3 The indication of the ratio of metal:ligand (2:1 and 1:2) in the Cu^{2+} complexes with 11 in dependence on the ratio of the analytical concentrations of ligand c_L and metal ions c_M

3

4

5

6

 $c_{\rm L}/c_{\rm M}$

2

0

[29] revealed that, whereas diketones **6–8** form 2:1, 1:1, and 1:2 complexes (metal:ligand) with Cu²⁺ ions, diols **9–11** give only 2:1 and 1:2 complexes. A representative output of such analysis for ligand **11** is shown in Fig. 3. This observation was also verified by the calculation of various models comprising different types of complexes. The calculation using the general model, which comprises the formation of M₂L, ML, and ML₂ complexes, provided the corresponding stability constants of ketones **6–8**. In the case of diols **9–11**, the stability constant β_{11} was statistically not significant and, therefore, a simplified model comprising only the formation of M₂L and ML₂ complexes was used. The stability constant values for compounds **6–11** and Cu²⁺ ions in methanol are summarized in Table 2.

The data in Table 2 show that the stability constants β_{21} and β_{11} for diketones **6–8** in dependence on the imidazole C4/C5 substitution differ only slightly. The highest value of β_{21} was obtained for the phenyl-disubstituted diketone **8**, which is most probably given by the sterically hindered coordination of the acetate anions or molecules of solvent as coligands to the two coordinated Cu^{2+} ions. Hence, the Cu^{2+} ions were coordinated by ligand 8 in the most efficient way. The formation of a 1:1 complex apparently requires sterically more hindered coordination of both imidazole rings. The appended substituents at imidazole positions C4/C5 in ketones 7 and 8 hinder the access of Cu^{2+} ions and, therefore, the stability constants β_{11} are generally smaller. However, the imidazole C4/C5 substitution influences the stability constants β_{12} more dramatically. The unsubstituted derivative 6 forms a stable complex with two ligands coordinated to one Cu^{2+} ion. In contrast to this, the coordination of two ligands 8 with bulky and rigid phenyl substituents is considerably hindered and, therefore, the stability constant β_{12} is almost negligible for ligand 8. From these relationships, we can deduce that the coordination sites for Cu²⁺ ions in diketones 6-8 are most probably the carbonyl oxygens or the imidazole nitrogens.

In comparison to diketones 6–8, the absence of an ML complex for alcohols 9-11 reflects a different structure of the coordination site. It seems that diketones 6-8 coordinate Cu²⁺ ions in ML complexes via carbonyl oxygens and less through the imidazole nitrogen N3. However, a cumulation of bulky groups that hinder efficient coordination in the ML type of complexes can be the second explanation. The relationship of the stability constants β_{21} (M_2L) in dependence on the imidazole C4/C5 substitution is similar to for diketones 6-8. This implies that the same coordination site is employed in both types of compounds, most probably imidazole N3. A weak dependence of the stability constant β_{12} on the imidazole C4/C5 substitution reveals that imidazole N3 is not a coordination site in the ML₂ complexes of diols 9-11. A coordination of two ligands through four hydroxy groups seems to be more probable. A small increase of the stability constant β_{12} as a consequence of imidazole C4/C5 substituents can be related to the sterically hindered coordination of the acetate anions or the molecules of solvent as coligands.

Table 2 The calculated stability constants β for diketones 6–8 and diols 9–11, their standard deviations, and residual standard deviations of the nonlinear regression *s*

Comp.	R	$\log \beta_{21} \ (M_2 L)$	$\log \beta_{11}$ (ML)	$\log \beta_{12}$ (ML ₂)	S
6	Н	10.29 ± 0.010	7.100 ± 0.010	12.76 ± 0.009	1.08×10^{-3}
7	Me	10.03 ± 0.013	5.991 ± 0.005	9.587 ± 0.001	6.89×10^{-3}
8	Ph	11.38 ± 0.042	6.164 ± 0.036	3.302 ± 0.086	4.24×10^{-3}
9	Н	7.323 ± 0.001	a	9.014 ± 0.001	2.89×10^{-3}
10	Me	6.888 ± 0.004	a	9.534 ± 0.006	5.51×10^{-3}
11	Ph	8.449 ± 0.003	а	10.13 ± 0.01	5.67×10^{-3}

^a This type of complex was not observed

Conclusion

Starting from dicarboxamide **5**, diketones **6–8** and diols **9–11** were prepared by the nucleophilic addition of C2-lithiated imidazole species. The direct fourfold addition proved to be difficult and, therefore, the stepwise addition was necessary. Both diketones **6–8** and TADDOL-like diols **9–11** were examined as model compounds for the complexation of Cu^{2+} ions. Whereas diketones **6–8** formed the expected M₂L, ML, and ML₂ complex species, diols **9–11** provided only M₂L and ML₂ types of complexes.

Experimental

The reagents and solvents were reagent-grade and were purchased from Penta, Aldrich, and Acros, and used as received. The starting dicarboxylate 1 [22], imidazoles 2–4 [23–25], and dicarboxamide 5 [27, 28] were synthesized according to literature procedures. All reactions were performed in flamedried flasks under inert argon atmosphere. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl radical. Column chromatography was carried out with silica gel 60 (particle size 0.040-0.063 mm, 230-400 mesh; Merck) and commercially available solvents. Thin-layer chromatography (TLC) was conducted on aluminum sheets coated with silica gel 60 F_{254} obtained from Merck, with visualization by UV lamp (254 or 360 nm). ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively, with a Bruker Avance 400 instrument at 25 °C. Chemical shifts are reported in ppm relative to the signal of Me₄Si. The residual solvent signal in the ¹H and ¹³C NMR spectra was used as an internal reference (CDCl₃-7.25 and 77.23 ppm). Apparent resonance multiplicities are described as s (singlet), br s (broad singlet), d (doublet), and m (multiplet). Mass spectra were measured on a GC/MS configuration comprised of an Agilent Technologies 6890N gas chromatograph equipped with a 5973 Network MS detector (EI 70 eV, mass range 33-550 Da) or on an LC-MS Micromass Quattro Micro API (Waters) instrument with a direct input (ESI+, CH₃OH, mass range 200-800 Da). IR spectra were recorded on a Perkin Elmer FT-IR Spectrum BX spectrometer. Optical rotations were measured on a Perkin Elmer 341 polarimeter using the sodium D line (589 nm), specific rotations $[\alpha]$ are given in units of deg cm² g⁻¹, and concentration c is 0.5 g/ 100 cm³ MeOH. Elemental analyses were performed on an EA 1108 Fisons instrument, and their results were found to be in good agreement with the calculated values.

General procedure for the synthesis of diketones 6-8

To imidazole 2–4 (16.0 mmol) dissolved in 50 cm³ THF, 10.25 cm³ of *n*BuLi (16.4 mmol, 1.6 M solution in

hexane) was added at 0 °C under argon. The yellow or orange reaction mixture was stirred for 15 min, whereupon 0.98 g of **5** (4.0 mmol) dissolved in 30 cm³ THF was added. The reaction mixture was stirred for 1.5 h at 0 °C and poured into a vigorously stirred biphasic system of 200 cm³ aqueous KH₂PO₄ (10%) and 200 cm³ CH₂Cl₂. The organic phase was separated, the aqueous layer was extracted with 2×150 cm³ CH₂Cl₂, the combined organic layers were dried (Na₂SO₄), and the solvents were evaporated at reduced pressure. The resulting crude product was purified on column chromatography using the indicated solvent system.

[(4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-diyl]bis-[(1-methyl-1H-imidazol-2-yl)methanone] (**6**, C₁₅H₁₈N₄O₄)

Off-white solid. Yield 0.74 g (58%); m.p.: 96–97 °C; $R_{\rm f} = 0.38$ (SiO₂; EtOAc); $[\alpha]_{\rm D}^{20} = -180.8^{\circ} \, {\rm cm}^2 \, {\rm g}^{-1}$ (c = 0.5, MeOH); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.54$ (s, 6H, 2 × CH₃), 4.00 (s, 6H, 2 × NCH₃), 5.87 (s, 2H, 2 × CH), 6.84 (s, 2H, 2 × CH_{im}), 6.94 (s, 2H, 2 × CH_{im}) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 26.78$, 35.95, 79.17, 113.33, 127.21, 129.60, 142.09, 186.63 ppm; IR (neat): $\bar{\nu} = 3,132$, 2,985, 2,926, 1,682 (C=O), 1,403, 1,260, 1,206, 1,160, 1,043, 978, 881, 862, 780, 754, 700 cm⁻¹; EI-MS (70 eV): m/z = 318 (M⁺, 1), 260 (24), 209 (61), 181 (57), 151 (100), 109 (94).

[(4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-diyl]bis [(1,4,5-trimethyl-1H-imidazol-2-yl)methanone] (7, C₁₉H₂₆N₄O₄)

Off-white solid. Yield 0.81 g (54%); m.p.: 85–86 °C; $R_{\rm f} = 0.49$ (SiO₂; EtOAc); $[\alpha]_{\rm D}^{20} = -130.3^{\circ} \,{\rm cm}^2 \,{\rm g}^{-1}$ (c = 0.5, MeOH); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.55$ (s, 6H, 2 × CH₃), 1.85 (s, 6H, 2 × C_{im}CH₃), 2.09 (s, 6H, 2 × C_{im}CH₃), 3.89 (s, 6H, 2 × NCH₃), 5.78 (s, 2H, 2 × CH) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 8.93$, 12.69, 26.77, 32.72, 79.39, 112.82, 130.93, 136.03, 140.38, 185.92 ppm; IR (neat): $\bar{\nu} = 3,434$, 2,983, 2,921, 1,669 (C=O), 1,560, 1,463, 1,373, 1,293, 1,180, 1,104, 1,013, 942, 900, 779, 727 cm⁻¹; EI-MS (70 eV): *m*/ z = 374 (M⁺, 2), 316 (27), 237 (19), 179 (100), 137 (99), 110 (22), 56 (23).

[(4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis-[(1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methanone] (8, C₃₉H₃₄N₄O₄)

Off-white solid. Yield 2.07 g (83%); m.p.: 110–111 °C; $R_{\rm f} = 0.63$ (SiO₂; EtOAc/hexane 1:1); $[\alpha]_{\rm D}^{20} = +134.0^{\circ} {\rm cm}^2 {\rm g}^{-1}$ (c = 0.5, MeOH); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.73$ (s, 6H, 2 × CH₃), 3.62 (s, 6H, 2 × NCH₃), 6.14 (s, 2H, 2 × CH), 6.70 (d, 4H, J = 7.2 Hz, Ph), 7.11–7.14 (m, 6H, Ph), 7.24–7.30 (m, 8H, Ph), 7.35–7.39 (m, 2H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 26.89$, 33.53, 79.93,

112.90, 126.45, 127.20, 128.29, 129.15, 129.27, 129.45, 130.49, 133.33, 135.33, 138.27, 141.36, 186.50 ppm; IR (neat): $\bar{v} = 3,053, 2,985, 2,934, 1,684$ (C=O), 1,446, 1,379, 1,202, 1,112, 1,025, 989, 954, 902, 770, 694 cm⁻¹; EI-MS (70 eV): m/z = 234 (100), 218 (14), 165 (48); ESI-MS: m/z = 623 (M + 1)⁺, 645 (M + 23)⁺, 1,267 (2M + 23)⁺.

General procedure for the synthesis of diols 9-11

To imidazole **2–4** (2.0 mmol) dissolved in 20 cm³ THF, 1.28 cm³ of *n*BuLi (2.05 mmol, 1.6 M solution in hexane) was added at 0 °C under argon. The yellow or orange reaction mixture was stirred for 15 min, whereupon diketone **6–8** (0.5 mmol) dissolved in 15 cm³ THF was added. The reaction mixture was stirred for 1.5 h at 0 °C and poured into a vigorously stirred biphasic system of 50 cm³ aqueous KH₂PO₄ (10%) and 50 cm³ CH₂Cl₂. The organic phase was separated, the aqueous layer was extracted with 2×50 cm³ CH₂Cl₂, the combined organic layers were dried (Na₂SO₄), and the solvents were evaporated at reduced pressure. The resulting crude product was purified on column chromatography using the indicated solvent system.

[(4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-diyl]bis[bis(1-methyl-1H-imidazol-2-yl)methanol] (9, $C_{23}H_{30}N_8O_4$)

Off-white solid. Yield 161 mg (67%); m.p.: 204-205 °C; $[\alpha]_{D}^{20} =$ $R_{\rm f} = 0.25$ $(SiO_2;$ EtOAc/MeOH 5:1); $-206.8^{\circ} \text{ cm}^2 \text{ g}^{-1}$ (c = 0.5, MeOH); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.32$ (s, 6H, 2 × CH₃), 3.24 (s, 6H, $2 \times \text{NCH}_3$), 3.98 (s, 6H, $2 \times \text{NCH}_3$), 5.33 (s, 2H, $2 \times CH$), 6.47 (s, 4H, 4 × CH_{im}), 6.77 (s, 2H, 2 × CH_{im}), 6.82 (s, 2H, 2 × CH_{im}), 9.26 (br s, 2H, OH) ppm; ^{13}C NMR (100 MHz, CDCl₃): $\delta = 26.79, 33.93, 35.62, 73.74,$ 81.21, 106.27, 122.35, 122.54, 123.69, 126.92, 146.78, 149.03 ppm; IR (neat): $\bar{v} = 2.981$ (OH), 1.461, 1.388, 1,280, 1,239, 1,118, 1,070, 985, 896, 728, 717, 685 cm⁻¹; ESI-MS: $m/z = 505 (M + 23)^+$, 987 $(2M + 23)^+$.

[(4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-diyl]bis-[bis(1,4,5-trimethyl-1H-imidazol-2-yl)methanol] (**10**, C₃₁H₄₆N₈O₄)

Off-white solid. Yield 196 mg (66%); m.p.: 139–140 °C; $R_{\rm f} = 0.30$ (SiO₂; EtOAc/MeOH 5:1); $[\alpha]_{\rm D}^{20} = -143.6^{\circ} {\rm cm}^2 {\rm g}^{-1}$ (c = 0.5, MeOH); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.35$ (s, 6H, 2 × CH₃), 1.81 (s, 6H, 2 × C_{im}CH₃), 1.89 (s, 6H, 2 × C_{im}CH₃), 2.04 (s, 6H, 2 × C_{im}CH₃), 2.12 (s, 6H, 2 × C_{im}CH₃), 3.10 (s, 6H, 2 × NCH₃), 3.84 (s, 6H, 2 × NCH₃), 5.26 (s, 2H, 2 × CH), 9.53 (br s, 2H, OH) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 8.62$, 9.35, 11.92, 13.03, 26.97, 31.20, 33.08, 73.77, 81.58, 105.99, 123.15, 123.77, 128.20, 131.13, 144.98, 147.24 ppm; IR (neat): $\bar{\nu} = 2,918$ (OH), 1,721, 1,440, 1,396, 1,369, 1,222, 1,128, 1,069, 1,004, 911, 123.20, 123.20, 123.20, 123.20, 123.20, 123.20, 123.20, 123.20, 123.20, 123.20, 130.20, 123.20, 130.20, 140. 870, 781, 698 cm⁻¹; ESI-MS: $m/z = 595 (M + 1)^+$, 1211 $(2M + 23)^+$.

[(4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-diyl]bis-[bis(1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methanol] (**11**, C₇₁H₆₂N₈O₄)

Off-white solid. Yield 262 mg (48%); m.p.: 197–198 °C; $R_{\rm f} = 0.63$ (SiO₂; EtOAc/hexane 1:2); $[\alpha]_{\rm D}^{20} = -85.6^{\circ}$ cm² g⁻¹ (c = 0.5, MeOH); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.59$ (s, 6H, 2 × CH₃), 2.73 (s, 6H, 2 × NCH₃), 3.93 (s, 6H, 2 × NCH₃), 5.86 (s, 2H, 2 × CH), 7.05–7.53 (m, 40H, Ph), 9.60 (br s, 2H, OH) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 27.13$, 31.84, 34.10, 74.59, 81.58, 106.69, 125.85, 126.25, 126.54, 126.66, 127.99, 128.14, 128.52, 128.59, 128.89, 128.94, 130.24, 130.46, 130.96, 131.10, 131.43, 131.83, 133.26, 134.03, 135.24, 135.76, 146.44, 149.28 ppm; IR (neat): $\bar{\nu} = 2,887$ (OH), 1,600, 1,504, 1,441, 1,370, 1,230, 1,133, 1,053, 1,024, 908, 771, 693 cm⁻¹; ESI–MS: m/z = 1,113 (M + 23)⁺.

Stability constant β determination

The stability constants of the complexes prepared from ligands 6-11 and Cu²⁺ ions were determined by spectrophotometric titration at 25 °C. A 1-cm-wide quartz cuvette was filled with 3 cm^3 of ligand solution in methanol $(c = 2 \times 10^{-5} \text{ mol/dm}^3)$ and the absorption spectrum was measured in the range of wavelengths λ from 280 to 350 nm. A 745 mm³ quantity of solution of copper(II) acetate in methanol ($c = 2 \times 10^{-3} \text{ mol/dm}^3$, the accurate concentration was determined by ICP) was added gradually in 2-50-mm³ portions. The additions were optimized with respect to the molar ratio of ligand:metal (15:1 at the beginning, 1:25 at the end, 45 additions overall). The absorption spectra were recorded upon each Cu^{2+} addition. The absorption spectrum of 745 mm³ of the aforementioned copper(II)acetate solution in 3 cm³ of methanol was measured at the end. The stability constants β and their molar absorption coefficients $\varepsilon(\lambda)$ were calculated from the matrix of measured absorbancies (row-concentrations, columns-wavelengths) employing the program OPchem [31]. The same program was used for the determination of the number of particles in the solution and for the indication of the complexes with the given ratio of metal:ligand.

Acknowledgments This research was supported by the Czech Science Foundation (203/08/0208) and the Ministry of Education, Youth, and Sport of the Czech Republic (MSM 002167501).

References

1. Gawroński J, Gawrońska K (1999) Tartaric and malic acids in synthesis. Wiley, New York

- 2. Blaser H-U (1992) Chem Rev 92:935
- 3. Ghosh AK, Koltun ES, Bilcer G (2001) Synthesis 9:1281
- 4. Gal J (2008) Chirality 20:5
- 5. Parker D (1991) Chem Rev 91:1441
- 6. Horn HJ, Holland EG, Hazleton LW (1957) J Agric Food Chem 5:759
- 7. Yoon TP, Jacobsen EN (2003) Science 299:1691
- Benessere V, Del Litto R, De Roma A, Ruffo F (2010) Coord Chem Rev 254:390
- 9. Kagan HB, Dang TP (1972) J Am Chem Soc 94:6429
- 10. Frankland PF, Twiss DF (1904) J Chem Soc 85:1666
- 11. Seebach D, Beck AK, Heckel A (2001) Angew Chem Int Ed 40:92
- Weidmann B, Wilder L, Olivero AG, Maycock CD, Seebach D (1981) Helv Chim Acta 64:357
- 13. Duthaler RO, Hafner A (1992) Chem Rev 92:807
- 14. Bureš F, Kulhánek J (2005) Tetrahedron Asymmetry 16:1347
- Marek A, Kulhánek J, Ludwig M, Bureš F (2007) Molecules 12:1183
- Bureš F, Szotkowski T, Kulhánek J, Pytela O, Ludwig M, Holčapek M (2006) Tetrahedron Asymmetry 17:900
- 17. Marek A, Kulhánek J, Bureš F (2009) Synthesis 2:325

- 18. Sívek R, Pytela O, Bureš F (2008) J Heterocycl Chem 45:1621
- Sívek R, Bureš F, Pytela O, Kulhánek J (2008) Molecules 13:2326
- Kulhánek J, Bureš F, Šimon P, Schweizer WB (2008) Tetrahedron Asymmetry 19:2426
- 21. Bureš F, Kulhánek J, Růžička A (2009) Tetrahedron Lett 50:3042
- Mash EA, Nelson KA, Van Deusen S, Hemperly SS (1990) Org Synth 68:92
- 23. Kikugawa Y (1981) Synthesis 2:124
- Arduengo AJ, Rasika Dias HV, Dixon DA, Harlow RL, Klooster WT, Koetzle TF (1994) J Am Chem Soc 116:6812
- 25. Bredereck H, Gompper R, Hayer D (1959) Chem Ber 92:338
- 26. Prasad KR, Chandrakumar A (2007) Tetrahedron 63:1798
- 27. Ohshima T, Shibuguchi T, Fukuta Y, Shibasaki M (2004) Tetrahedron 60:7743
- 28. Zinchenko AA, Sergeyev VG, Kabanov VA, Murata S, Yoshikawa K (2004) Angew Chem Int Ed 43:2378
- 29. Maeder M (1987) Anal Chem 59:527
- 30. Tauler R, Kowalski B, Fleming S (1993) Anal Chem 65:2040
- OPchem, O. Pytela, Version 5.02, webpage: http://webak.upce. cz/_koch/cz/veda/OPgm.htm